
Crawling in Reverse
Lightweight Targeted Crawling of News Portals

Balázs Indig1,2,*, Tibor Kákonyi3, Attila Novák3,4

1Eötvös Loránd University, Centre for Digital Humanities
2Hungarian Academy of Sciences, Research Institute for Linguistics
3MTA-PPKE Hungarian Language Technology Research Group
4Pázmány Péter Catholic University, Faculty of Information Technology and Bionics
*Corresponding author

{indig.balazs@btk.elte.hu,kakonyitibor@gmail.com,novak.attila@itk.ppke.hu}

Based on the identically titled paper [1] presented at the 9th Language & Technology Con-
ference Poznań, Poland in 2019
The improvements that have been made since then are Balázs Indig’s work (pending publication)



Table of Contents

1. Motivation

2. The Classic NLP Workflow Including Crawling

3. Let’s Put Crawling in Reverse!

4. Testing the Idea

5. Conclusion

1



Motivation



Preserving and Using Textual Data

• The classical sources of text are National Archives
• Processing them involves a lot of manual work (scanning and OCR)
• Nowadays, the OCR is done by neural networks very efficiently
• However, these sources are mostly not open-access and their
growth is slow and limited

• With Web 2.0, a lot of texts are born-digital
• Born-digital materials also need to be preserved
• They are more endangered than physically existing materials
• Far easier to collect, store and process them (eg. Common Crawl,
Internet Archive)

• Upcoming EU law allows archiving and using archives for scientific
purposes

2



The Age of Crawlers

What does the Boss say?

• The usual Natural Language Processing (NLP) workflow:
‘Get SOME text to work with! The individual
content does NOT matter.’

• The usual digital humanist workflow:
‘Get THAT SPECIFIC text to work with! The
individual content does REALLY matter.’

3



The Classic NLP Workflow
Including Crawling



Crawling for NLP: the Traditional Way

1. Start a webspider to crawl the web, starting from an initial seed
(optionally with additional rules)

2. Use some boilerplate removal logic (heuristics/rule-based)
3. Deduplication
4. Run the NLP pipeline (split to sentences, tokenize, POS-tag, etc.)
5. Store the corpus

6. Use the text
7. Discover and fix errors in the pipeline
8. Go to step 1 and start with FRESH/OTHER text

4



Crawling for NLP: the Traditional Way

5



Let’s Put Crawling in Reverse!



Crawling for NLP: the Digital Humanist Way

1. Carefully select portals to crawl
2. Study the portal to extract its essential properties

3. Start a webspider to crawl the portal with the gained
information (virtually without duplication)

4. Store the resulting HTML pages – these are the primary sources
5. Use boilerplate removal rules tailored to the portal
6. Run the NLP pipeline (split to sentences, tokenize, POS-tag, etc.)

7. Store the corpus elsewhere – it is automatically reproducible
8. Use the text
9. Discover and fix errors in the pipeline
10. Go to step 5 and start with THE VERY SAME text

6



The Main Idea

‘If an ARTICLE does not appear in THE (PORTAL’S) ARCHIVE, it does
not exist!’ (adapted from Star Wars)

7



In Technical Terms

The Two-level Crawling and portal-based boilerplate removal:

• Most (news) portals use permalinks to identify articles and use
an article archive to make the articles searchable

• The article archive has simple structure and can be crawled easily
for the permalinks (dilemma: rules or machine-learning?)

• We must only crawl the gathered permalinks
• Virtually no duplication or junk!
• Less noise, reduced load, faster process

• A specific portal has its unique layout which is the same or very
similar for every article

• Simple, efficient rules to remove boilerplate or targeted
machine-learning (dilemma again)

8



In Technical Terms (cont.)

The details:

• We use a subset of the ISO standard WARC archive format for
the crawled webpages (request, response record pairs) and
reuse them as cache when needed

• Everything is reproducible in the pipeline from here on (We only
need to have the archive and know the exact versions of the
programs used)

• We tailored the crawling and the boilerplate removal to the
selected portals

• As layout changes are infrequent, it can collect new materials on a
daily basis

• In an easy-to-adjust framework

• We can supervise and adjust the rules and add new portals if
needed

9



Testing the Idea



The Task and the Resources

The Task:

• From five (structurally) quite different Hungarian news portals
• Extract text with metadata: Author, Publication date, Title, Lead,
Specified keywords, Text

• Be precise and sustainable, runtime is secondary
• Reuse existing tools when possible!

The Resources:

• One low-end office machine (4 GB RAM, Intel i3 with 4 cores)
• 100 Mb/s uplink

10



Programs Compared, Problems Found

Crawlers:

• The existing crawlers were too different to compare
• However, we compared one portal with the crawl made by the
National Széchényi Library

• The result was about 1,000 vs. 52,850 articles for our method

Boilerplate removal tools (JusText [3], Newspaper3k [2], our rules):

• All methods are rule-based and hard to compare
• Our method is specialised in the examined portals
• The two other methods are general and built as a monoliths
• Most existing tools can not (properly) extract metadata
• Existing tools have limited support for the Hungarian typography

11



Results

• Regular Expressions < existing programs < hand-crafted rules
that meet our requirements

• Now we use HTML parsers instead of REs (hard to automatise)
• On the portals’ article archives it was a great success!

• Numbers are growing, but new problems come to surface
• The first comparison with other archiving techniques is very
promising, but there are more to come

• We clearly need more portals, more comparisons, more time to
standardise the workflow

12



The annual distribution of 1,247,082 Articles (5 News Portals)

1998
2000

2002
2004

2006
2008

2010
2012

2014
2016

2018

Year

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000 No. of articles

13



Conclusion



Conclusion

• In 10 days with a low-end computer (due to rate limiting)
• Less than 100 GB space required (no garbage, just HTMLs)
• About half billion tokens estimated and growing
• Sustainable, low load on both sides
• Reproducible, improvable, extendable
• Groundbreaking work for later studies

• Topic modeling, Stylometry analysis (with the available metadata)
• Temporal (socio-)linguistic analysis (with the publication time)
• Future machine-learning-based improvement of the workflow
• Extending the set of targeted portals

• Future work:
• Standardised workflow and TEI output
• More comparisons in every possible way
• A semantic searching service on the crawled material

14



References i

B. Indig, T. Kákonyi, and A. Novák.
Crawling in reverse – lightweight targeted crawling of news
portals.
In M. Kubis, editor, Proceedings of the 9th Language &
Technology Conference: Human Language Technologies as a
Challenge for Computer Science and Linguistics, pages 81–87,
Poznań, Poland, may 2019. Wydawnictwo Nauka i Innowacje.

L. Ou-Yang.
Newspaper3k: Article scraping and curation.
https://github.com/codelucas/newspaper, 2013.

15

https://github.com/codelucas/newspaper


References ii

J. Pomikálek.
Removing boilerplate and duplicate content from web corpora.
PhD thesis, Masaryk university, Faculty of informatics, Brno,
Czech Republic, 2011.

16


	Motivation
	The Classic NLP Workflow Including Crawling
	Let's Put Crawling in Reverse!
	Testing the Idea
	Conclusion

