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Motivation



Preserving and Using Textual Data

• The classical sources of text are National Archives
• Processing them involves a lot of manual work (scanning and OCR)
• Nowadays, the OCR is done by neural networks very efficiently
• However, these sources are mostly not open-access and their
growth is slow and limited

• With Web 2.0, a lot of texts are born-digital
• Born-digital materials also need to be preserved
• They are more endangered than physically existing materials
• Far easier to collect, store and process them (eg. Common Crawl,
Internet Archive)

• Upcoming EU law allows archiving and using archives for scientific
purposes
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The Age of Crawlers

What does the Boss say?

• The usual Natural Language Processing (NLP) workflow:
‘Get SOME text to work with! The individual
content does NOT matter.’

• The usual digital humanist workflow:
‘Get THAT SPECIFIC text to work with! The
individual content does REALLY matter.’
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The Classic NLP Workflow
Including Crawling



Crawling for NLP: the Traditional Way

1. Start a webspider to crawl the web, starting from an initial seed
(optionally with additional rules)

2. Use some boilerplate removal logic (heuristics/rule-based)
3. Deduplication
4. Run the NLP pipeline (split to sentences, tokenize, POS-tag, etc.)
5. Store the corpus

6. Use the text
7. Discover and fix errors in the pipeline
8. Go to step 1 and start with FRESH/OTHER text
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Crawling for NLP: the Traditional Way

5



Let’s Put Crawling in Reverse!



Crawling for NLP: the Digital Humanist Way

1. Carefully select portals to crawl
2. Study the portal to extract its essential properties

3. Start a webspider to crawl the portal with the gained
information (virtually without duplication)

4. Store the resulting HTML pages – these are the primary sources
5. Use boilerplate removal rules tailored to the portal
6. Run the NLP pipeline (split to sentences, tokenize, POS-tag, etc.)

7. Store the corpus elsewhere – it is automatically reproducible
8. Use the text
9. Discover and fix errors in the pipeline
10. Go to step 5 and start with THE VERY SAME text
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The Main Idea

‘If an ARTICLE does not appear in THE (PORTAL’S) ARCHIVE, it does
not exist!’ (adapted from Star Wars)
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In Technical Terms

The Two-level Crawling and portal-based boilerplate removal:

• Most (news) portals use permalinks to identify articles and use
an article archive to make the articles searchable

• The article archive has simple structure and can be crawled easily
for the permalinks (dilemma: rules or machine-learning?)

• We must only crawl the gathered permalinks
• Virtually no duplication or junk!
• Less noise, reduced load, faster process

• A specific portal has its unique layout which is the same or very
similar for every article

• Simple, efficient rules to remove boilerplate or targeted
machine-learning (dilemma again)
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In Technical Terms (cont.)

The details:

• We use a subset of the ISO standard WARC archive format for
the crawled webpages (request, response record pairs) and
reuse them as cache when needed

• Everything is reproducible in the pipeline from here on (We only
need to have the archive and know the exact versions of the
programs used)

• We tailored the crawling and the boilerplate removal to the
selected portals

• As layout changes are infrequent, it can collect new materials on a
daily basis

• In an easy-to-adjust framework

• We can supervise and adjust the rules and add new portals if
needed
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Testing the Idea



The Task and the Resources

The Task:

• From five (structurally) quite different Hungarian news portals
• Extract text with metadata: Author, Publication date, Title, Lead,
Specified keywords, Text

• Be precise and sustainable, runtime is secondary
• Reuse existing tools when possible!

The Resources:

• One low-end office machine (4 GB RAM, Intel i3 with 4 cores)
• 100 Mb/s uplink
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Programs Compared, Problems Found

Crawlers:

• The existing crawlers were too different to compare
• However, we compared one portal with the crawl made by the
National Széchényi Library

• The result was about 1,000 vs. 52,850 articles for our method

Boilerplate removal tools (JusText [3], Newspaper3k [2], our rules):

• All methods are rule-based and hard to compare
• Our method is specialised in the examined portals
• The two other methods are general and built as a monoliths
• Most existing tools can not (properly) extract metadata
• Existing tools have limited support for the Hungarian typography
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Results

• Regular Expressions < existing programs < hand-crafted rules
that meet our requirements

• Now we use HTML parsers instead of REs (hard to automatise)
• On the portals’ article archives it was a great success!

• Numbers are growing, but new problems come to surface
• The first comparison with other archiving techniques is very
promising, but there are more to come

• We clearly need more portals, more comparisons, more time to
standardise the workflow

12



The annual distribution of 1,247,082 Articles (5 News Portals)
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Conclusion



Conclusion

• In 10 days with a low-end computer (due to rate limiting)
• Less than 100 GB space required (no garbage, just HTMLs)
• About half billion tokens estimated and growing
• Sustainable, low load on both sides
• Reproducible, improvable, extendable
• Groundbreaking work for later studies

• Topic modeling, Stylometry analysis (with the available metadata)
• Temporal (socio-)linguistic analysis (with the publication time)
• Future machine-learning-based improvement of the workflow
• Extending the set of targeted portals

• Future work:
• Standardised workflow and TEI output
• More comparisons in every possible way
• A semantic searching service on the crawled material
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