Crawling in Reverse
Lightweight Targeted Crawling of News Portals

Balázs Indig\(^1,2,*\), Tibor Kákonyi\(^3\), Attila Novák\(^3,4\)

\(^1\)Eötvös Loránd University, Centre for Digital Humanities
\(^2\)Hungarian Academy of Sciences, Research Institute for Linguistics
\(^3\)MTA-PPKE Hungarian Language Technology Research Group
\(^4\)Pázmány Péter Catholic University, Faculty of Information Technology and Bionics

*Corresponding author

\{indig.balazs@btk.elte.hu,kakonyitibor@gmail.com,novak.attila@itk.ppke.hu\}

Based on the identically titled paper [1] presented at the 9th Language & Technology Conference Poznań, Poland in 2019
The improvements that have been made since then are Balázs Indig’s work (pending publication)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motivation</td>
<td>The Classic NLP Workflow Including Crawling</td>
</tr>
<tr>
<td>2. The Classic NLP Workflow Including Crawling</td>
<td>Let’s Put Crawling in Reverse!</td>
</tr>
<tr>
<td>3. Let’s Put Crawling in Reverse!</td>
<td>Testing the Idea</td>
</tr>
<tr>
<td>4. Testing the Idea</td>
<td>Conclusion</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td></td>
</tr>
</tbody>
</table>
Motivation
• The classical sources of text are *National Archives*
 • Processing them involves a **lot of manual work** (scanning and OCR)
 • Nowadays, the OCR is done by neural networks very efficiently
 • However, these sources are mostly **not open-access** and their growth is slow and limited
• With Web 2.0, a lot of texts are **born-digital**
 • Born-digital materials also need to be preserved
 • They are **more endangered than physically existing materials**
 • Far easier to collect, store and process them (eg. *Common Crawl, Internet Archive*)
 • Upcoming EU law allows archiving and using archives for scientific purposes
What does the **Boss** say?

- The usual **Natural Language Processing (NLP)** workflow:
 ‘Get **SOME** text to work with! The individual content **does NOT** matter.’

- The usual **digital humanist** workflow:
 ‘Get **THAT SPECIFIC** text to work with! The individual content **does REALLY** matter.’
The Classic NLP Workflow
Including Crawling
Crawling for NLP: the Traditional Way

1. Start a webspider to crawl the web, starting from an initial seed (optionally with additional rules)
2. Use some boilerplate removal logic (*heuristics/rule-based*)
3. Deduplication
4. Run the NLP pipeline (split to sentences, tokenize, POS-tag, etc.)
5. Store the corpus

6. Use the text
7. Discover and fix errors in the pipeline
8. Go to step 1 and start with **FRESH/OTHER** text
Crawling for NLP: the Traditional Way
Let’s Put Crawling in Reverse!
1. Carefully select portals to crawl
2. Study the portal to extract its essential properties
3. Start a webspider to crawl the portal with the gained information (virtually without duplication)
4. Store the resulting HTML pages – these are the primary sources
5. Use boilerplate removal rules tailored to the portal
6. Run the NLP pipeline (split to sentences, tokenize, POS-tag, etc.)
7. Store the corpus elsewhere – it is automatically reproducible
8. Use the text
9. Discover and fix errors in the pipeline
10. Go to step 5 and start with THE VERY SAME text
‘If an ARTICLE does not appear in THE (PORTAL’S) ARCHIVE, it does not exist!’ (adapted from Star Wars)
In Technical Terms

The **Two-level Crawling** and **portal-based boilerplate removal**:

- Most (news) portals use **permalink**s to identify articles and use an **article archive** to make the articles searchable
 - The article archive has simple structure and can be crawled easily for the permalinks (**dilemma**: rules or machine-learning?)
- We must only crawl the gathered permalinks
 - Virtually no duplication or junk!
 - **Less noise, reduced load, faster process**
- A specific portal has its unique layout which is the same or very similar for every article
 - Simple, efficient rules to remove boilerplate or targeted machine-learning (**dilemma** again)
The details:

* We use a subset of the ISO standard WARC archive format for the crawled webpages (request, response record pairs) and reuse them as cache when needed
 * Everything is reproducible in the pipeline from here on (We only need to have the archive and know the exact versions of the programs used)
* We tailored the crawling and the boilerplate removal to the selected portals
 * As layout changes are infrequent, it can collect new materials on a daily basis
 * In an easy-to-adjust framework
* We can supervise and adjust the rules and add new portals if needed
Testing the Idea
The Task:

- From five (structurally) quite different Hungarian news portals
- Extract text with metadata: Author, Publication date, Title, Lead, Specified keywords, Text
- Be **precise and sustainable**, runtime is secondary
- Reuse existing tools when possible!

The Resources:

- One low-end office machine (4 GB RAM, Intel i3 with 4 cores)
- 100 Mb/s uplink
Crawlers:

- The existing crawlers were too different to compare
- However, we compared one portal with the crawl made by the National Széchényi Library
 - The result was about 1,000 vs. 52,850 articles for our method

Boilerplate removal tools (JusText [3], Newspaper3k [2], our rules):

- All methods are rule-based and hard to compare
- Our method is specialised in the examined portals
- The two other methods are general and built as a monoliths
- Most existing tools can not (properly) extract metadata
- Existing tools have limited support for the Hungarian typography
Results

- **Regular Expressions** < existing programs < hand-crafted rules that meet our requirements
 - Now we use **HTML parsers** instead of REs (hard to automatise)
 - On the portals’ article archives it was a great success!
- Numbers are growing, but new problems come to surface
- The first comparison with other archiving techniques is very promising, but there are more to come
- We clearly need more portals, more comparisons, more time to standardise the workflow
The annual distribution of 1,247,082 Articles (5 News Portals)
Conclusion
Conclusion

- In **10 days** with a low-end computer (due to rate limiting)
- Less than 100 GB space required (no garbage, just HTMLs)
- About **half billion** tokens estimated and growing
- Sustainable, **low load on both sides**
- Reproducible, improvable, extendable
- **Groundbreaking** work for later studies
 - Topic modeling, Stylometry analysis (with the available metadata)
 - Temporal (socio-)linguistic analysis (with the publication time)
 - Future machine-learning-based improvement of the workflow
 - Extending the set of targeted portals
- Future work:
 - Standardised workflow and TEI output
 - More comparisons in every possible way
 - A semantic searching service on the crawled material
B. Indig, T. Kákonyi, and A. Novák.
Crawling in reverse – lightweight targeted crawling of news portals.

L. Ou-Yang.
Newspaper3k: Article scraping and curation.